
面向对象分析与设计 
Object-Oriented Analysis and Design 

陈昊鹏 
chen-hp AT sjtu.edu.cn 

 

 

Fall-2011 



                               上海交通大学 软件学院 高可靠实验室 

第6章 

基于设计实现系统 

面向对象分析与设计 

Object-Oriented Analysis and Design 

Chapter Six 

From Design  

to Implementation 



                               上海交通大学 软件学院 高可靠实验室 

Agenda 

 Implementation Model and UML 

– Deployment Diagram 

 Forward, Reverse, and Round-Trip Engineering 

 Code and Test 

from Prof. Rao Ruonan 



                               上海交通大学 软件学院 高可靠实验室 

Implementation Model and UML 

Deployment Diagram 

面向对象分析与设计 

Object-Oriented Analysis and Design 

from Prof. Rao Ruonan 



                               上海交通大学 软件学院 高可靠实验室 

Implementation Model and UML Deployment Diagram 

 The Deployment View 

 UML Deployment Diagram 

– What is Node? 

– What Is Connection? 

– What Is Artifact ? 

from Prof. Rao Ruonan 



                               上海交通大学 软件学院 高可靠实验室 

Key Concepts: The Deployment View 

The Deployment View is an “architecturally significant” slice of the Deployment Model. 

from Prof. Rao Ruonan 



                               上海交通大学 软件学院 高可靠实验室 

UML Deployment Diagram 

 A deployment diagram is a diagram that shows the 

configuration of run time processing nodes and the components 

that live on them. 

 Captures the topology of a system’s hardware 

 Built as part of architectural specification 

– Purpose 

– Specify the distribution of components 

– Identify performance bottlenecks 

 Developed by architects, networking engineers, and system 

engineers 

from Prof. Rao Ruonan 



                               上海交通大学 软件学院 高可靠实验室 

UML Deployment Diagram (1.x) - Example 

from Prof. Rao Ruonan 



                               上海交通大学 软件学院 高可靠实验室 

UML Deployment Diagram (1.x) - Example 

from Prof. Rao Ruonan 



                               上海交通大学 软件学院 高可靠实验室 

UML Deployment Diagram (2.x) 

 Models the run-time architecture of a system 

 A diagram that shows the configuration of run time processing 

nodes and the artifacts that live on them. 

from Prof. Rao Ruonan 



                               上海交通大学 软件学院 高可靠实验室 

What is Node? 

 A node is a physical element that exists at run time and 

represents a computational resource, generally having at least 

some memory and, often, processing capability. 

 A set of components may reside on a node and may also migrate 

from node to node. 

 Graphically, a node is rendered as a cube, usually including 

only its name. 

from Prof. Rao Ruonan 



                               上海交通大学 软件学院 高可靠实验室 

Deployment Diagram (2.x) - Node 

 Node Instance 

 

 Node Stereotypes 

– A number of standard stereotypes are provided for nodes, 

– namely «cd-rom», «computer», «disk array», «pc», «pc client», «pc 

server», «secure», «server», «storage», «unix server», «user pc» 

 

 

 

 Association 

– In the context of a deployment diagram, an association represents a 

communication path between nodes 

 

from Prof. Rao Ruonan 



                               上海交通大学 软件学院 高可靠实验室 

What Is a Connection? 

 A connection represents a: 

– Communication mechanism 

• Physical medium 

• Software protocol 

from Prof. Rao Ruonan 



                               上海交通大学 软件学院 高可靠实验室 

Deployment Diagram (2.x) - Artifact 

 Artifact 

– A physical part of a system that exists at the level of the implementation 

platform. 

– Graphically, an artifact is rendered as a rectangle with the keyword 

«artifact». 

from Prof. Rao Ruonan 



                               上海交通大学 软件学院 高可靠实验室 

Deployment Diagram (2.x) - Artifact Diagram 

 Artifact Diagram 

– A variety of deployment 

diagram 

– shows a set of artifacts and their 

relationships. 

– commonly contain 

• artifacts 

• dependency, generalization, 

association, and realization 

relationships 

from Prof. Rao Ruonan 



                               上海交通大学 软件学院 高可靠实验室 

Forward, Reverse, and 

Round-Trip Engineering 

面向对象分析与设计 

Object-Oriented Analysis and Design 

from Prof. Rao Ruonan 



                               上海交通大学 软件学院 高可靠实验室 

Forward, Reverse, and Round-Trip Engineering 

 Forward Engineering 

 Reverse Engineering 

 Round-Trip Engineering 

from Prof. Rao Ruonan 



                               上海交通大学 软件学院 高可靠实验室 

Forward Engineering 

 Forward engineering means the generation of code from UML 

diagrams 

 Many of the tools can only do the static models: 

– They can generate class diagrams from code, but can't generate 

interaction diagrams. 

– For forward engineering, they can generate the basic (e.g., Java) class 

definition from a class diagram, but not the method bodies from 

interaction diagrams. 

 Demo 

from Prof. Rao Ruonan 



                               上海交通大学 软件学院 高可靠实验室 

Reverse Engineering 

 Reverse engineering means generation of UML diagrams from 

code 

 Demo 

from Prof. Rao Ruonan 



                               上海交通大学 软件学院 高可靠实验室 

Round-Trip Engineering 

 Round-trip engineering closes the loop 

– the tool supports generation in either direction and can synchronize 

between UML diagrams and code, ideally automatically and immediately 

as either is changed. 

 Demo 

from Prof. Rao Ruonan 



                               上海交通大学 软件学院 高可靠实验室 

Code and Test 

面向对象分析与设计 

Object-Oriented Analysis and Design 

from Prof. Rao Ruonan 



                               上海交通大学 软件学院 高可靠实验室 

Code and Test 

 Creating Class Definitions from Class Diagram 

 Creating Methods from Interaction Diagrams 

 Collection Classes in Code 

 Test-Driven Development 

 Refactoring 

from Prof. Rao Ruonan 



                               上海交通大学 软件学院 高可靠实验室 

Creating Class Definitions from Class Diagram 

 Defining a Class with Method Signatures and Attributes 

from Prof. Rao Ruonan 



                               上海交通大学 软件学院 高可靠实验室 

Creating Methods from Interaction Diagrams 

from Prof. Rao Ruonan 



                               上海交通大学 软件学院 高可靠实验室 

Collection Classes in Code 

from Prof. Rao Ruonan 



                               上海交通大学 软件学院 高可靠实验室 

Test-Driven Development 

 An excellent practice promoted by the iterative and agile XP 

method, and applicable to the UP, is test-driven development 

(TDD). 

– It is also known as test-first development 

 In OO unit testing TDD-style, test code is written before the 

class to be tested and the developer writes unit testing code for 

nearly all production code. 

 Unit testing framework 

– The most popular unit testing framework is the xUnit family (for many 

languages) 

• For Java, the popular version is JUnit. 

• There's also an NUnit for .NET 

from Prof. Rao Ruonan 



                               上海交通大学 软件学院 高可靠实验室 

Refactoring 

 Refactoring is a structured, disciplined method to rewrite or 

restructure existing code without changing its external 

behavior, 

– applying small transformation steps combined with re-executing tests 

each step. 

 Continuously refactoring code is another XP practice and 

applicable to all iterative methods 

 Code that's been well-refactored is short, tight, clear, and 

without duplication it looks like the work of a master 

programmer. 

– Code that doesn't have these qualities smells bad or has code smells. 

from Prof. Rao Ruonan 



                               上海交通大学 软件学院 高可靠实验室 

下课！ 

面向对象分析与设计 

Object-Oriented Analysis and Design 


