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Agenda 

 Implementation Model and UML 

– Deployment Diagram 

 Forward, Reverse, and Round-Trip Engineering 

 Code and Test 

from Prof. Rao Ruonan 
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Implementation Model and UML 

Deployment Diagram 

面向对象分析与设计 

Object-Oriented Analysis and Design 

from Prof. Rao Ruonan 
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Implementation Model and UML Deployment Diagram 

 The Deployment View 

 UML Deployment Diagram 

– What is Node? 

– What Is Connection? 

– What Is Artifact ? 

from Prof. Rao Ruonan 
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Key Concepts: The Deployment View 

The Deployment View is an “architecturally significant” slice of the Deployment Model. 

from Prof. Rao Ruonan 
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UML Deployment Diagram 

 A deployment diagram is a diagram that shows the 

configuration of run time processing nodes and the components 

that live on them. 

 Captures the topology of a system’s hardware 

 Built as part of architectural specification 

– Purpose 

– Specify the distribution of components 

– Identify performance bottlenecks 

 Developed by architects, networking engineers, and system 

engineers 

from Prof. Rao Ruonan 
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UML Deployment Diagram (1.x) - Example 

from Prof. Rao Ruonan 
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UML Deployment Diagram (1.x) - Example 

from Prof. Rao Ruonan 
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UML Deployment Diagram (2.x) 

 Models the run-time architecture of a system 

 A diagram that shows the configuration of run time processing 

nodes and the artifacts that live on them. 

from Prof. Rao Ruonan 
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What is Node? 

 A node is a physical element that exists at run time and 

represents a computational resource, generally having at least 

some memory and, often, processing capability. 

 A set of components may reside on a node and may also migrate 

from node to node. 

 Graphically, a node is rendered as a cube, usually including 

only its name. 

from Prof. Rao Ruonan 
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Deployment Diagram (2.x) - Node 

 Node Instance 

 

 Node Stereotypes 

– A number of standard stereotypes are provided for nodes, 

– namely «cd-rom», «computer», «disk array», «pc», «pc client», «pc 

server», «secure», «server», «storage», «unix server», «user pc» 

 

 

 

 Association 

– In the context of a deployment diagram, an association represents a 

communication path between nodes 

 

from Prof. Rao Ruonan 
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What Is a Connection? 

 A connection represents a: 

– Communication mechanism 

• Physical medium 

• Software protocol 

from Prof. Rao Ruonan 
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Deployment Diagram (2.x) - Artifact 

 Artifact 

– A physical part of a system that exists at the level of the implementation 

platform. 

– Graphically, an artifact is rendered as a rectangle with the keyword 

«artifact». 

from Prof. Rao Ruonan 
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Deployment Diagram (2.x) - Artifact Diagram 

 Artifact Diagram 

– A variety of deployment 

diagram 

– shows a set of artifacts and their 

relationships. 

– commonly contain 

• artifacts 

• dependency, generalization, 

association, and realization 

relationships 

from Prof. Rao Ruonan 
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Forward, Reverse, and 

Round-Trip Engineering 

面向对象分析与设计 

Object-Oriented Analysis and Design 

from Prof. Rao Ruonan 
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Forward, Reverse, and Round-Trip Engineering 

 Forward Engineering 

 Reverse Engineering 

 Round-Trip Engineering 

from Prof. Rao Ruonan 
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Forward Engineering 

 Forward engineering means the generation of code from UML 

diagrams 

 Many of the tools can only do the static models: 

– They can generate class diagrams from code, but can't generate 

interaction diagrams. 

– For forward engineering, they can generate the basic (e.g., Java) class 

definition from a class diagram, but not the method bodies from 

interaction diagrams. 

 Demo 

from Prof. Rao Ruonan 
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Reverse Engineering 

 Reverse engineering means generation of UML diagrams from 

code 

 Demo 

from Prof. Rao Ruonan 
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Round-Trip Engineering 

 Round-trip engineering closes the loop 

– the tool supports generation in either direction and can synchronize 

between UML diagrams and code, ideally automatically and immediately 

as either is changed. 

 Demo 

from Prof. Rao Ruonan 
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Code and Test 

面向对象分析与设计 

Object-Oriented Analysis and Design 

from Prof. Rao Ruonan 
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Code and Test 

 Creating Class Definitions from Class Diagram 

 Creating Methods from Interaction Diagrams 

 Collection Classes in Code 

 Test-Driven Development 

 Refactoring 

from Prof. Rao Ruonan 
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Creating Class Definitions from Class Diagram 

 Defining a Class with Method Signatures and Attributes 

from Prof. Rao Ruonan 
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Creating Methods from Interaction Diagrams 

from Prof. Rao Ruonan 
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Collection Classes in Code 

from Prof. Rao Ruonan 
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Test-Driven Development 

 An excellent practice promoted by the iterative and agile XP 

method, and applicable to the UP, is test-driven development 

(TDD). 

– It is also known as test-first development 

 In OO unit testing TDD-style, test code is written before the 

class to be tested and the developer writes unit testing code for 

nearly all production code. 

 Unit testing framework 

– The most popular unit testing framework is the xUnit family (for many 

languages) 

• For Java, the popular version is JUnit. 

• There's also an NUnit for .NET 

from Prof. Rao Ruonan 
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Refactoring 

 Refactoring is a structured, disciplined method to rewrite or 

restructure existing code without changing its external 

behavior, 

– applying small transformation steps combined with re-executing tests 

each step. 

 Continuously refactoring code is another XP practice and 

applicable to all iterative methods 

 Code that's been well-refactored is short, tight, clear, and 

without duplication it looks like the work of a master 

programmer. 

– Code that doesn't have these qualities smells bad or has code smells. 

from Prof. Rao Ruonan 
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